
Linear Algebra Notes

Solving systems of equations:

Suppose we have n unknowns x1, x2, . . . , xn and a system of n linear equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

This system is equivalent to the following matrix equation:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



x1
x2
...
xn

 =


b1
b2
...
bn


We can write this system succinctly as Ax = b. We can solve this system of equations using
the augmented matrix, which is the n× (n+ 1) matrix which is A concatenated with the
vector b: 

a11 a22 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn


Our Goal: Use elementary row operations (listed below) to transform the augmented matrix
so that all the elements below the “diagonal” (a11, a22, . . . , ann) are zero and all the elements
on the diagonal are equal to one. Once our matrix is in this form, we can solve the system
of equations.

Elementary Row Operations:

• interchange two rows,

• multiply a row by a constant,

• add a multiple of one row to another.

Example: Suppose we have the following system of linear equations:

x1 + x2 − 4x3 = 1

3x1 + 2x2 + 4x3 = −4

4x1 + 3x2 + 2x3 = −4
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The augmented matrix associated to this is:1 1 −4 1
3 2 4 −4
4 3 2 −4


Since the first entry of the first row is 1, there is no need to rescale the first row. So, our
first step is to eliminate the first entry in the second and third rows. Suppose r1, r2 and r3
are the first second and third rows, respectively.

1. First, use the third elementary row operation to replace r2 with r2 − 3r1.1 1 −4 1
0 −1 16 −7
4 3 2 −4


2. Next, use the third elementary row operation to replace r3 with r3 − 4r1.1 1 −4 1

0 −1 16 −7
0 −1 18 −8.


3. Use the second elementary row operation to replace r2 with −r2.1 1 −4 1

0 1 −16 7
0 −1 18 −8.


4. Next, use the third elementary row operation to replace r3 with r3 + r2.1 1 −4 1

0 1 −16 7
0 0 2 −1.


5. Use the second elementary row operation to replace r3 with 1

2
r3.1 1 −4 1

0 1 −16 7
0 0 1 −1

2
.


Now the matrix is in the right form, with 1’s along the diagonal and 0’s below. We can now
solve our system of linear equations since the above augmented matrix is equivalent to:

x1 + x2 − 4x3 = 1

x2 − 16x3 = 7

x3 = −1/2

From this, it easily follows that x3 = −1
2
, x2 = −1, and x1 = 0.
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Important Note: Given matrix equation Ax = b, there are three possibilities:

• there is a unique solution,

• there is no solution, or

• there are infinitely many solutions.

When b = 0, the zero vector, there will either be a unique solution or infinitely many
solutions. The case when there is no solution doesn’t happen since x = 0 is always a
solution.

You get a unique solution to Ax = b exactly when det(A) 6= 0. The other two cases (no
solution or infinitely many) occur when you have det(A) = 0. We obtained a unique solution
for the example above. Let us verify that the determinant was nonzero.

Example: In our above example, we had the matrix A equal to:

A =

1 1 −4
3 2 4
4 3 2


Let’s find the determinant of this matrix. To do this, we “expand” along the top row. By
doing this, finding the determinant of a matrix becomes equivalent to finding the determinant
of smaller matrices.∣∣∣∣∣∣

1 1 −4
3 2 4
4 3 2

∣∣∣∣∣∣ = 1

∣∣∣∣2 4
3 2

∣∣∣∣− 1

∣∣∣∣3 4
4 2

∣∣∣∣− 4

∣∣∣∣3 2
4 3

∣∣∣∣ = 1(4− 12)− 1(6− 16)− 4(9− 8) = −2.

Since the determinant is nonzero, we know that the matrix equation Ax = b will have a
unique solution.

Eigenvalues and eigenvectors:

Given a matrix A, we would like to find constants λ and vectors x (where x 6= 0) so that

Ax = λx.

When this happens, λ is called an eigenvalue of A and x is called the corresponding
eigenvector of A.

Letting I denote the identity matrix (1’s along the diagonal and 0’s elsewhere), we can
rewrite the above formula as:

(A− λI)x = 0.
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Certainly, one solution to this equation would be the zero vector. However, we know that x 6=
0. Therefore, if there is only a λ for which this formula could be true only if det(A−λI) = 0.
The determinant of this matrix is an nth degree polynomial in λ. We can use this polynomial
to find eigenvalues λ and then go back and find eigenvectors associated to λ. Let’s see an
example.

Example: Find the eigenvalues and eigenvectors for

A =

(
2 4
3 2

)
First, we find the eigenvalues.

A− λI =

(
2− λ 4

3 2− λ

)
Set the determinant of this matrix equal to 0.∣∣∣∣2− λ 4

3 2− λ

∣∣∣∣ = (2− λ)2 − 12 = λ2 − 4λ− 8 = 0.

We can solve, and find that the eigenvalues are λ1 = 2 + 2
√

3 and λ2 = 2− 2
√

3.

To find the eigenvector for λ1, we want to find x1 so that

(A− λ1I)x1 = 0.

Plugging in our value for λ1, we have:(
−2
√

3 4

3 −2
√

3

)(
x1
y1

)
=

(
0
0

)
.

In general, we can use the augmented matrix to solve this system of equations to find x1.
This is a simple system of equations which we can solve quickly. We find that y1 =

√
3
2
x1.

(Since the det(A−λI) = 0, there are infinitely many solutions!) So in fact there are infinitely
many eigenvectors, but they are all constant multiples of each other, so we can pick one that
we like. If I choose x1 =

√
3, the I get the eigenvector x1 corresponding to the eigenvalue

λ1 = 2 + 2
√

3:

x1 =

(√
3

3/2

)
.

We can similarly find an eigenvalue for λ2 = 2− 2
√

3:(
2
√

3) 4

3 2
√

3

)(
x2
y2

)
=

(
0
0

)
.

From this, we deduce that y2 = −
√
3
2
x2. If I choose x2 =

√
3, the I get the eigenvector x2

corresponding to the eigenvalue λ2 = 2− 2
√

3:

x2 =

( √
3

−3/2

)
.
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